In answering some of the following questions, you may need device characteristics. The operational amplifier is ideal. There is no offset. The output saturation voltage is 1.5 V below the power supply voltage. For JFET, $g_m = 4.0 \text{ mS}$. Parameters of BJT include $h_{FE} = \beta_{ac} = 250$, $r_\pi = h_{IE} = 1 \text{k}\Omega$, $V_{BE} = 0.68 \text{ V}$, and $r_x = 0$.

1. To measure a very low frequency, e.g., 10 Hz, waveform using an oscilloscope, one should use (a) DC coupling (b) AC coupling.
2. A voltage divider is made of 1 kΩ and 50 Ω resistors in series. If the input is one volt, what is the approximate output voltage? (a) 0.05 V (b) 0.5 V (c) 1 V (d) 5 V.
3. Two operational amplifier circuits were built; one with a gain of 20 and the other 200. Which circuit has a larger bandwidth? (a) gain of 20, (b) gain of 200.
4. The output impedance of the operational amplifier is of the order of (a) 30 Ω (b) 300 Ω (c) 3 kΩ (d) 300 kΩ.
5. Under a reverse bias, the gate-source resistance of a JFET is of the order of (a) 1 kΩ (b) 10 kΩ (c) 1 MΩ (d) 10 MΩ.
6. Consider the JFET amplifier built. Assuming everything else remains unchanged, which action may lead to an increase in the voltage gain? (a) decrease R_D (b) increase V_{GS}, i.e., make it less negative (c) increase R_S.
7. With a power supply of 15 V, in order to realize the maximum voltage swing without distortion, the Q-point V_{DS} of a JFET amplifier should be: (a) 7.5 V (b) 9 V (c) 12 V.
8. The input impedance of the common-emitter BJT amplifier is of the order of (a) 1 Ω (b) 10 Ω (c) 100 Ω (d) 1 kΩ (e) 10 kΩ.
9. Based on the device characteristics given, calculate R_1 of the BJT amplifier circuit, if the power supply voltage is 15 V, $I_C=5 \text{ mA}$, $R_E=200 \text{ Ω}$, and $R_2=47 \text{ k$\Omega$}$. R_1 should be approximately (a) 250 kΩ (b) 25 kΩ (c) 2.5 kΩ.
10. Based on the device characteristics, calculate R_S of the JFET amplifier circuit. Assume the power supply voltage is 15 V, $I_D=3 \text{ mA}$. R_S should be approximately of the order of (a) 25 Ω (b) 250 Ω (c) 2.5 kΩ.
11. With a power supply of 15 V, in order to realize the maximum voltage swing without distortion, the Q-point V_{ce} of a BJT amplifier should be: (a) 7.5 V (b) 8 V (c) 9 V.
12. To increase the Q-point voltage at the collector of the BJT amplifier, one should (a) increase R_1 (b) increase R_2.
13. To obtain a voltage gain of 250, R_C should be approximately (a) 100 Ω (b) 1 kΩ (c) 10 kΩ (d) 100 kΩ.
14. The main purpose of using a common-collector amplifier circuit is to provide (a) a low input impedance (b) **a low output impedance** (c) a high input impedance (d) a high output impedance.

15. The phase between the input and the output signal of the common-collector amplifier is (a) 0°, (b) 90°, (c) 180°, (d) 270°.

16. The phase between the two collector ports of the differential amplifier is (a) 0°, (b) 90°, (c) 180°, (d) 270°.

17. The output impedance of a constant voltage source is very low, therefore, the output impedance of a current source should be (a) very low (b) **very high**.

18. The low frequency -3 dB point of the differential amplifier is approximately (a) **non-existing**, i.e., it works even at DC (b) 20 Hz (c) 200 Hz (d) 2 kHz.

19. The frequency response of an R-C circuit is often determined by the RC time constant. Based on this, the high frequency -3 dB point would (a) increase (b) **decrease** if R_C is increased in the differential amplifier circuit.

20. The differential amplifier built has easily a differential voltage gain in excess of 200. What is the common-mode voltage gain? (a) same as the differential gain (b) much larger than the differential gain (c) **much less than the differential gain**.