Ultrafast Lasers

Alexander N. Cartwright

Laboratory for Advanced Spectroscopic Evaluation
and
Electrical Engineering

State University of New York at Buffalo

http://www.ee.buffalo.edu/~anc

anc@eng.buffalo.edu
Laser Principles

• **Gain Medium**
 – Crystal, gas, semiconductor, glass
 – Gain \(\geq \) loss \(\Rightarrow \) lasing

• **Resonator**
 – Cavity (minimum of two mirrors)
 – Stability (ABCD transmission matrix)

• **Loss Mechanisms**
 – Mirror reflectivity
 – Gain medium interface (Brewster’s Angle)
 – Dirt, dust, water vapor
Laser Basics

• Output Mechanism
 – Output coupler
 – Cavity dumper

• Pump Source (Electrical or Optical)
 – Supplies energy
 – Most expensive and cumbersome

• Most efficient Lasers: Semiconductor Lasers
 (~ 60% of electrical pump energy to light)

• Typical Efficiency of Lasers << 10 %
Ultrafast Laser

• **Ultra**: Going beyond others or beyond due limit: EXTREME

• **Fast**: Used to mean *nanoseconds* (back in the old days)

• Today **Ultrafast** typically implies temporal resolution < 10 *picoseconds* (10^{-11} seconds)

• **World Record**:

 6 *femtoseconds* (at ~ 800 nm)

 ⇒ two optical periods

 (1 *femtosecond* = 10^{-15} seconds)
Ultrafast Laser

• “Typical” Short Pulse Lasers ~ 100 fs
 (relatively easy to attain)

• Optical Frequency
 – Central frequency of Ti:Sapphire laser ~ 800 nm
 – **Enormous bandwidth:**
 – $\nu_o = c/\lambda_o = 375$ THz ($>10^{12}$ Hz!)
Properties of Short Pulse

• For a delta function \(\delta(t) \)

\[
\mathcal{F}\{ \delta(t) \} = 1
\]

(\(\mathcal{F} \) - Fourier Transform)

• Infinitely narrow in time

\[\Rightarrow \text{Infinitely broad in frequency domain} \]

• Shorter pulses

\[\Rightarrow \text{Larger bandwidth required} \]
Real World Pulses

\[\Delta \tau_p \Delta \nu = Const = 0.44 \]

\[\nu = \frac{c}{\lambda} \]

\[\Delta \nu = \frac{c}{\lambda} \frac{\Delta \lambda}{\lambda} = \nu_o \frac{\Delta \lambda}{\lambda} = 9.4 \, THz = 1.9 \, million \, video \, channels \]
Gain Medium: Einsteins A & B Coefficients

- A_{21}: Spontaneous Emission
- B_{12}: Absorption
- B_{21}: Stimulated Emission

Material: $I_v(0)$ to $I_v(z)$
Gain Medium: Einsteins A & B Coefficients

\[I_v(z) = I_v(0) \cdot e^{\gamma_0(v) \cdot z} \]
\[\gamma_0(v) = \sigma(v) \cdot \left[N_2 - \frac{g_2}{g_1} \cdot N_1 \right] \]
\[\sigma(v) = A_{21} \cdot \frac{\lambda^2}{8\pi n^2} \cdot g(v) \]

\(N_2 > \frac{g_2}{g_1} \cdot N_1 \)

\(\sigma(v) \): Stimulated Emission cross section

\(g(v) \): Lineshape Function (width of transm. Spectrum)
Laser Oscillation

\[\gamma_0(v) = A_{21} \cdot \frac{\lambda^2}{8\pi n^2} \cdot g(v) \cdot \left[N_2 - \frac{g_2}{g_1} \cdot N_1 \right] \]

\[I_v(z) = I_v(0) \cdot e^{\gamma_0(v) \cdot z} \]

For amplification we need to have Gain.
Laser Oscillation

\[\text{Loss} = R_1 \cdot R_2 \quad \text{Gain} = G_0^2(\nu) = \left(e^{\gamma_0(\nu)l}\right)^2 = e^{2\gamma_0(\nu)l} \]

Here

\[\gamma_0(\nu) \geq \frac{1}{2l} \cdot \ln \left[\frac{1}{R_1 R_2} \right] = \alpha_0 \]

Gain/Length \quad Loss/Length

\[\gamma_0(\nu) \quad \alpha_0 \]

Possible Oscillation

Lasing takes place at longitudinal mode with highest gain to loss rate.

\[\Rightarrow \text{CW Operation} \]
Mode Locking

\[\Delta \nu \sim \frac{1}{2\pi \Delta t_p} \]

For a simple Laser: \(\tau_{RT} - \frac{c}{2d} = FSR \)

Suppose \(\Delta t_p = 6 \text{ fs} \), \(\lambda_0 = 600 \text{ nm} \) (\(\nu_0 = 5 \times 10^{14} \text{ Hz} \))

\[\Rightarrow \Delta \nu \sim 2.65 \times 10^{13} \text{ Hz} \]

\[\Delta \nu \sim 5\% \text{ of the entire region} \]

\[\Rightarrow \text{pulse is 1.8 } \mu \text{m long } \Rightarrow 3 \text{ optical wavelength} \]

or 6 optical cycles in entire pulse
Mode Locking
Typical Energy-level Arrangements

- **Traditional solid-state lasers**
 - Initial Upper
 - Rapid decay
 - Pump
 - Laser
 - Lower

- **Gas Lasers**
 - Initial Upper Laser
 - Lower
 - Ground
 - Rapid decay

- **Solid-state and Dye Lasers**
 - Initial Upper Laser
 - Lower Ground
 - Rapid decay
Kerr Lens Modelocking

![Diagram of Kerr Lens Modelocking]

- **CW Argon-ion laser**
- **Output coupler**
- **Adjustable slit**
- **B.R.F**
- **M₂**
- **L**
- **Ti:Al₂O₃**
- **M₃**
- **P₁**
- **P₂**
- **M₄**
Typical Alexandrite Laser Properties

- Laser Wavelengths: 700 - 820 nm
- Upper Laser Level Lifetime: 260 microsec at 298K
- Inversion Density: $6 \times 10^{24}/m^3$
- Small Signal Gain Coefficient: 4 - 20/m
- Laser Gain Medium Length: 0.12m
- Single Pass Gain: 1.6 - 11
- Pumping Method: optical (flashlamp or laser)
- Pumping Bands: 380 - 630 nm, with peaks at 410 and 590 nm
- Output Power: up to 1.2J/pulse
- Mode: single-mode or multi-mode
Typical Titanium Sapphire Laser Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Wavelengths</td>
<td>660 - 1180nm</td>
</tr>
<tr>
<td>Upper Laser Level Lifetime</td>
<td>3.8 µs</td>
</tr>
<tr>
<td>Small Signal Gain Coefficient</td>
<td>20 /m</td>
</tr>
<tr>
<td>Laser Gain Medium Length</td>
<td>0.1m</td>
</tr>
<tr>
<td>Single Pass Gain</td>
<td>7 - 10</td>
</tr>
<tr>
<td>Pumping Method</td>
<td>optical (flashlamp or laser)</td>
</tr>
<tr>
<td>Pumping Bands</td>
<td>380 - 620nm</td>
</tr>
<tr>
<td>Output Power</td>
<td>up to 50W (cw), 10^{12} W for 100 fs pulse</td>
</tr>
<tr>
<td>Mode</td>
<td>single-mode or multi-mode</td>
</tr>
</tbody>
</table>
Chromium - LiSAF and Chromium - LiCaF

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LiSAF</th>
<th>LiCaF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Wavelengths</td>
<td>780-1010nm</td>
<td>720-840nm</td>
</tr>
<tr>
<td>Upper Laser Level Lifetime</td>
<td>67×10^{-6}s</td>
<td>170×10^{-6}s</td>
</tr>
<tr>
<td>Small Signal Gain coefficient</td>
<td>16/m</td>
<td>9/m</td>
</tr>
<tr>
<td>Single Pass Gain</td>
<td>up to 10</td>
<td>up to 4</td>
</tr>
<tr>
<td>Pumping Method</td>
<td>optical</td>
<td>optical</td>
</tr>
<tr>
<td>Pumping Bands</td>
<td>peak at 620nm, peak at 420nm, peak at 280nm</td>
<td></td>
</tr>
<tr>
<td>Output Power</td>
<td>up to 10MW pulses of 10ns duration</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Single or multi-mode</td>
<td></td>
</tr>
</tbody>
</table>